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Abstract—Chalcogen-containing heteropentalene and quasimonocyclic compounds havifg-@ and
S—S-S triads or G-O and S-S diads were studied by thab initio [MP2(full)/6-31G™ and MP2(fc)/
6-31+G™] and DFT (B3LYP/6-31G") methods. The oxygen-containing compounds are characterized by
strong O--O repulsion which destabilize the pentalene structure. The molecule of 3-thioxo-1-propenesulfenyl
fluoride, in contrast to 3-mercapto-2-propenethial, is more stable inctha-cis conformation with

an appreciably shortened -85 contact [2.274A (MP2), 2.503A (B3LYP)] which approaches the length of

a standard SS covalent bond.

According to both experimental and theoretical The energy of the X-O donoracceptor interaction
studies [14], chalcogen-containing IBelectron in monocyclic compoundda-lIf with a 6z-electron
pentalene compounds—-Ic have a planarC,, struc- aromatic system also increases in the seriesS)
ture with T-configuration of bonds at the chalcogenO—Se, O->Te (5.0, 10.5, and 16.5 kcal/mol; R = ClI
atom. This structure is stabilized by formation of[1]). There are detailed published data, both experi-
a strong three-center four-electron (hypervalent) bonthental [1, 2] and theoretical [4], on chalcogen-con-
due to intramolecular attractive <O interaction taining pentalehe systems likeand Il in which the

between the electron-rich centers: electron-donor oxygen center is replaced by isoelec-
tronic NR, S, or Se atom. However, no information
O 0= =+ S is available on analogs dfhaving an G-O-0 triad.
T — [ T — 9 A possible reason is that such compounds could be
X X Z unstable since the hypervalent—-@-0O bond
Ia Tb Ie is relatively weak or there exists a destabilizing

repulsive interaction.
I, X =S @@, Se @), Te ©.

R g0 f—b
The hypervalent X-O interaction results in con- U -— U
siderable shortening of the-XO distance (2.043
for O---S, 2.085A for O---Se, and 2.172A for O---Te I r

[3]) relative to the sum of the corresponding van der

Waals radii (3.30A for O---S, 3.40A for O---Se, and I, X=S,R=H@); X=S,R=Cl p); X=Se,R=H ¢);
3.60 A for O---Te [5]); the energy of the hypervalent X =Se, R=Cl{); X=Te, R=H @); X=Te, R=CI ).

X<«0O bond increases in the series S, Se, Te>®&

12.1 kcal/mol; G3>Se, 19.8 kcal/mol; and OTe, The goal of the present work was to study intra-
27.7 kcal/mol [3]). molecular hypervalent GO interaction in oxygen-
containing pentalendl(a) and quasicyclic structures
This study was financially supported by the Russian Founda(lva_’_ IVb) and the possibility for their aromatic
tion for Basic Research (projects nos. 98-03-33169 and geStabilization. We also planned to compare the results
15-97476) and by the Ministry of Education of the Russianwith those for related trithiapentalenelllp ) and
Federation (grant no. 97-9.1-288). quasicyclic sulfur-containing structuresVe¢, 1vVd).
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INTRAMOLECULAR HYPERVALENT X<«-X INTERACTION 1303

O---O interaction inlVa is repulsive. In order to

[| X\X<—>|< - . [/X\X—X estimate the energy of the-QO interaction inlVa
S —NF we calculated the correspondirtgans-s-transstruc-
Ila I1Ib ture of 3-hydroxy-2-propenalMl) which lacks short
O---O contact so that the oxygen atoms are distant
X g% Xay_x from each other. Structur®l turned out to be by
— 0 =L 4.5 (MP2) or 4.1 kcal/mol (B3LYP) more stable than

structurelVa. The relative values oAE, ¢ and AH
Ile 1d change only slightly when zero-point energy and
o R temperature factors are taken into account. Thus, the
[/ ¢

IVa-Ivd
M,X=0@),Sb); IV, X=0,R=H@); X=0,
R=F@®);X=S, R=HE);X=S,R=F ().

Calculation procedure. The -calculations were
performed in terms of the nonempirical HartrBeck
(RHF) method with account taken of all (full) or
only valence electrons (fc), according to the second-
order Meller-Plesset perturbation theory (MP2), and
in terms of the density functional theory (DFT,
B3LYP) with the valence-split 6-31'G and 6-31+G
basis sets; Gaussian-94 [6] and GAMESS [7] software 099 710
packages were used. Full geometry optimization of Lie jo0
the molecular structures corresponding to stationary
points ¢. = 0 for minimal-energy points and = 1
for saddle points, wheré is the number of negative 1319
eigenvalues of the Hesse matrix in a given stationary
point [8]) on the potential energy surface (PES) was

run until a gradient value of I®a.u./bohr (GAMESS
software or the“tight” mode of Gaussian-94). The
molecular structures shown in figures were plotted
with the aid of PD program (PLUTO mode) of the
PCMODEL software package [9].

3-Hydroxy-2-propenal. According to the calcula-
tions, the enol form of malonaldehyde (3-hydroxy-2-
propenal) is more stable in conformativhwith intra-
molecular hydrogen bond [10, 11].
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IVa A\ VI

The cis-s-cisstructure oflVa also corresponds to
a minimum @ = 0) on the PES, but it is 12.9 (MP2)
and 15.0 kcal/mol (B3LYP) less favorable than con- . Geometric parameters (bond lengttis, and bond
formeroV. The O--O d!,Stance in molecul@Va is anggles, deg) of strFl)JctureIS/a, V( and VI, calculated by
2.846 A (MP2) or 2.864A (B3LYP); these values are  the MP2(fc)/6-31+G  (boldface numbers) and B3LYP/
very similar to the sum of standard van der Waals 6-31G* methods (italicized numbers). The experimental
radii of two oxygen atoms (2.8) [5]. Therefore, the data were taken from [12].

VI, C, L =0
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1304 MINYAEV et al.

Table 1. Results ofab initio [[MP2(fc)/6-31+G*] and DFT (B3LYP/6-31G') calculations of structurey/ —X12

Strﬁg.ture Method | 7 Eor a.U. kcgll/zr}]m ZPE, au. kilz/ﬁ%l kcg:;'r,nol o, o
Va | MP2 0 266.396245 0 0.067250 0 0 115
B3LYP | 0 _267.135168 0 0.067003 0 0 162
Vv MP2 0 266416806 | -12.9 | 0068523 | 121 125 259
B3LYP | o0 267159104 | 150 | 0067861 | 145 14.9 279
Vi MP2 0 266.403439 | 45 | 0.067267 45 45 139
B3LYP 0 267141776 | 41 | 0.066832 43 42 154
Vb | mP2 0 _365.287615 0 0.057507 0 0 38
B3LYP 0 366.247564 0 0.057285 0 0 74
Vil MP2 0 365202096 | 2.8 | 0.057457 28 27 52
B3LYP 0 1366251320 2.4 | 0057012 25 24 82
vl | mp2 1 365280114 | 2.2 | 0057218 2.0 16 i 108
B3LYP 1 366251038 | 2.2 | 0.056851 25 28 i 83
ve | mp2 0 _911.577323 0 0.060966 0 0 97
B3LYP | o0 -913.072393 0 0.060216 0 0 147
IX MP2 0 _911.578564| 0.8 | 0.059888 0.9 0.4 43
B3LYP | o0 913.074349| 12 | 0.059323 18 14 120
vd | mP2 0 | -1010.603786 0 0.054820 0 0 70
B3LYP | 0 | -1012.298977 0 0.053954 0 0 124
X MP2 0 | 1010575421 17.8 | 0.053566 17.0 17.6 64
B3LYP | 0 | _1012.276058| 144 | 0.052762 13.7 14.2 43
X MP2 1 | _1010575427| 17.8 | 0.053159 16.8 16.9 i 97
B3LYP 1 | _1012.276028| 144 | 0.052624 13.6 13.6 i 25

& % is the number of negative Hessian eigenvalues for a given stationary EQjrand AE are, respectively, the total and relative
energies (1 a.u. = 627.5095 kcal/mol); ZPE is the zero-point enafgps; is the relative energy corrected for the zero-point energy;
AH is the relative enthalpy; and is the minimal or imaginary harmonic frequency.

quantities AE, AE,pg and AH can be regarded as 3-fluoroxy-2-propenal, corresponding to an energy
qualitative estimates of the-OO repulsion. The cal- minimum (. = 0) on the potential energy surface. The
culated geometry and energy parameters of structur€s--O distance inlVb [2.639 A (MP2) or 2.652A
IVa, V, and VI are given in Fig. 1 and Table 1. (B3LYP)] is shorter than the sum of the standard van
The calculated geometric parameters of structdre der Waals radii of oxygen atoms (2B2 A) [5].
obtained in this work, are well consistent with theThe correspondingtrans-s-trans-structure VII also
results of earlier theoretical studies [10] and expericorresponds to an energy minimum on the PES and

mental data [11] (Fig. 1). has noC; symmetry.
In going from cis-s-cis-structure [Va to transs-
trans-conformerVI, the C-C bond alternation almost (U_F peOnon? OO
does not change, i.e., thdifferences between the =
lengths of single and double carbaarbon bonds IVb Vi VIII
in these structures are very similaxl(R = H) =
0.111A (MP2), 0.116A (B3LYP) (IVa); Al(R = H) = StructureVIIl has aC, symmetry; it corresponds

0.109 A (MP2), 0.114A (B3LYP) (VI). This fact to a saddle point on the PE$ £ 1) and is a transition
indirectly indicates the absence of aromatic stabilizastate for internal rotation of the €F bond about

tion of structurelVa. the O-C bond with a barrier of 2.2 (MP2) or
3-Fluoroxy-2-propenal. cis-s-cis-Structure 1Vb 2.2 kcal/mol (B3LYP). According to the calculations,
with a short Q--O contact is a stable form of structureVIl is by 2.8 (MP2) or 2.4 kcal/mol
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Fig. 2. Geometric parameters (bond lengths, and bond angles, deg) of structura, VII, and VIl , calculated by the
MP2(fc)/6-31+G" (boldface numbers) and B3LYP/6-31Gmethods (italicized numbers).

(B3LYP) more favorable tharVb; this indicates 3-Mercapto-2-propenethial. Unlike 3-hydroxy-
that the O--O interaction is also repulsive, though it 2-propenal, the molecule of 3-mercapto-2-propenethial
is considerably weaker (by a factor of 2) than thes stable only in the planasis-s-cis-conformationlVVc
interaction inIVa. The calculated geometry and with a shortened SS contact. A structure like/
energy parameters of structur®gb, VII, and VIII (with S---HS intramolecular hydrogen bond) does not
are given in Fig. 2 and Table 1. correspond to a stationary point on the PES.

The alternation of carbewarbon bonds increases

in going from cis-s-cis-isomer Vb to transstrans y—S8—H N
structureVIl . The differences between the single and =
double bonds are as followdVb: AI(R = F) = IVe X

0.112A (MP2), 0.113A (B3LYP); VIl : AI(R = F) =
0.120 A (MP2), 0.125A (B3LYP). These data Comparison of the total energies of structubés
indicate a weak aromatic character of structiue . and IX indicates that the S interaction inlVc is

3329

IVe, C, L =0 IX, C, A, =0

Fig. 3. Geometric parameters (bond lengths, and bond angles, deg) of structurééc and IX, calculated by the
MP2(fc)/6-31+G" (boldface numbers) and B3LYP/6-31Gmethods (italicized numbers).
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repulsive. On the other hand, the calculateeSond  (B3LYP)]. This distance is by almost 1.4 shorter
length inlVc is considerably smaller [3.128 (MP2), than the sum of the corresponding van der Waals radii
3.137 A (B3LYP)] than the sum of the standard vanand only by 0.20.4 A greater that the standard length
der Waals radii of sulfur atoms (3.X) [5]. The cal- of covalent S-S bond; for example, the-S bond
culated geometry and energy parameters of structuréength in HS, is 2.055A [12]. Thus replacement of
IVc and IX are given in Fig. 3 and Table 1. The the hydrogen atom in the thiol group 8fc by more

alternation of carborcarbon bonds irtis-s-cisstruc-

electronegative fluorine atom leads to formation of

ture IVc is insignificant: the differenceAl between of strong three-center four-electron-S—F bond in

the single and double bond lengths is 0.0YZMP2)
or 0.068 A (B3LYP). transs-trans-Structure IX is
characterized by a greater bond alternatitind.085A

fluoride 1IVd. Presumably, the choice by the nature
of sulfur atoms for formation of disulfide bridges to
stabilize tertiary protein structure vivo [13] is based

(MP2) or 0.081A (B3LYP). These results indicate On the ability of nonvalence-SS contact to be trans-

higher aromaticity of structur®/c compared tdVa.

3-Thioxo-1-propenesulfenyl fluoride. The stable
conformation of the molecule of 3-thioxo-1-propene-

sulfenyl fluoride is cis-s-cislvVd with a strongly
shortened S-S contact [2.274A (MP2), 2.503 A

2.274 1.823

Ivd, C, A = 0

Fig. 4. Geometric parameters (bond lengtis, and bond
angles, deg) of structurd¥d, X, andXIl, calculated by the
MP2(fc)/6-31+G" (boldface numbers) and B3LYP/6-31G
methods (italicized numbers).

formed into a strong SS bond; this transformation
is initiated by an electronegative reagent.

According to the calculationdrans-s-trans-struc-
ture X is by 17.8 (MP2) or 14.4 kcal/mol (B3LYP)
less favorable tharcis-s-cisconformer IVd; these
values can be regarded as a qualitative estimate of the
energy of hypervalent&S interaction. The calculated
geometry and energy parameters of structukés,

X, andXl are given in Fig. 4 and Table 1.

S—S—F
P F/SWS F/SWS
Ivd X XI

There is almost no carbenarbon bond alternation
in cis-s-cisstructurelVd, as follows from the small
Al values: 0.005A (MP2), 0.022 A (B3LYP). In
going to trans-s-transstructure X, Al increases by
about 0.1A: Al = 0.088A (MP2), 0.119A (B3LYP).

2-(3H-1,2-Dioxol-3-ylidene)acetaldehyde.The
calculations showed that bicyclic pentalene structure
llla with a C,, symmetry corresponds to a saddle
point on the potential energy surface and is the transi-
tion structure for G-O bond migration in the triad
0-0---0=0---0-0: Xl = llla = Xl ",

O,

| 0—0 |O\o ------ 0

IITa XII

0—O0
WO

XIII

This process follows the intramolecular nucleo-
philic substitution path (§2), involving the central
oxygen atom and is characterized by a low activation
barrier: 9.1 (MP2) or 7.8 kcal/mol (B3LYP).

70—Nu + YO~

—_—
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Xll, C, A =0

Fig. 5. Geometric parameters (bond lengths, and bond angles, deg) of structuré , XII, and XIll , calculated by the
MP2(full)/6-31G™ (boldface numbers) and B3LYP/6-3TGmethods (italicized numbers).

Unfortunately, we have found no experimental data Planar monocyclic structureXIl corresponds to
on S2 intramolecular substitution at thexygen a minimum on the PES for &i,0;; here, the ©-O
atom, although a number of heterolytic oxidation reaceontact is somewhat shorter [2.645(MP2), 2.696A
tions are likely to include an analogous step-{14]. (B3LYP)] than the sum of the standard van der Waals

Table 2. Results ofab initio [(MP2(full)/6-31G™] and DFT (B3LYP/6-31G") calculations of structurefila, Illb,
and Xl -XIV

Structure AE, AEpg, AH, 1
no. Method » Eor a.U. kcal/mol ZPE, au. kcal/mol kcal/mol @, e
Ia MP2 0 -417.312025 9.1 0.082144 8.5 8.4 102

B3LYP 1 -418.461888 7.8 0.080397 6.6 6.2 i 217
Xl MP2 0 -417.326465 0 0.083060 0 0 125
B3LYP 0 -418.474259 0 0.082325 0 0 124
X1 MP2 0 -417.326712 -0.2 0.082944 -0.3 -0.3 94
B3LYP 0 -418.474734 -0.3 0.082225 -0.4 -0.3 100
Ib MP2 0 -1385.259195 0 0.077923 0 0 108
B3LYP 0 -1387.493343 0 0.076047 0 0 159
XV MP2 0 -1385.239871 12.1 0.076621 11.3 11.3 47
B3LYP 0 -1387.472697 13.0 0.075453 12.6 12.8 64

& See note® to Table 1.
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Fig. 6. Geometric parameters (bond lengtis, and bond
angles, deg) of structureHlb and XIV, calculated by
the MP2(full)/6-31G" (boldface numbers) and B3LYP/
6-31G* methods (italicized numbers). The experimental
data were taken from [2].

radii of oxygen atoms (2.8\) [5]. The calculation of
the correspondingrans-s-transstructurexIll showed
that isomersXIl and XIlI

character of the ©-O interaction. In going froncis-
s-cisXIl to trans-s-transXlll the carborcarbon

bond lengths almost do not change; this means that
the character of conjugation (aromaticity) also remains
unchanged. The calculated geometry and energy

parameters of structuréda , Xl , andXIlll are given
in Fig. 5 and Table 2.

1,6,6a-Trithiapentalene structures.Unlike struc-
ture llla, planar bicyclic moleculdllb has aC,,

symmetry and corresponds to a minimum on the PES.

The S--S distance inlllb is 2.367 A (MP2) or

have similar energies,
though the latter is by 0.2 (MP2) or 0.3 kcal/mol
(B3LYP) more stable. This suggests a repulsive

MINYAEV et al.

atoms (3.7A) [4]; therefore, the S-S interaction in
llib is attractive, and it leads to formation of a strong
three-center four-electron -5-S bond.

The energy of hypervalent -SS interaction in
structurelllb , which was estimated as the difference
between the total energies ofs-s-cis and trans-s-
transiisomerslllb and X1V, is 12.1 (MP2) or
13.0 kcal/mol (B3LYP). In going from structudéb
to XIV, the alternation of carbemarbon bonds
increases by about 0.08, indicating a considerable
contribution of aromatic stabilization of the bicyclic
pentalene structurellb ). The calculated geometry
and energy parameters of structudde and XIV
are given in Fig. 6 and Table 2. The calculated struc-
tural parameters ofilb agree well with the experi-
mental data reported in [2] and with the results of
theoretical study of trithiapentalene [4].
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